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Abstract
The phase-space representation for a relativistic linear oscillator in a
homogeneous external field expressed through the finite-difference equation is
constructed. Explicit expressions of the relativistic oscillator Wigner quasi-
distribution function for the stationary states as well as for the states of
thermodynamical equilibrium are obtained and their correct limits are shown.

PACS numbers: 03.65.Pm, 02.30.Gp, 03.65.Vf

1. Introduction

The problem of a one-dimensional harmonic oscillator is one of the important paradigms of
theoretical physics. Its solution in the classical approach is unique and simple, leading to
an enormous number of applications in a wide range of modern physics [1]. This problem
in the non-relativistic quantum approach has at least the same importance, and probably the
main reason is that it has very elegant solutions to the Schrödinger equation in terms of the
well-known Hermite polynomials and the algebra of this problem can be easily factorized as
the Heisenberg algebra with its generators being the starting point of the quantum field theory.
Here, one needs to note that there is another important solution to the Schrödinger equation in
terms of the Hermite polynomials and it is the non-relativistic harmonic oscillator in an external
homogeneous field [2]. The importance of this non-relativistic problem can also be observed
through its numerous applications. For example, the theory of the Brownian motion of a
quantum oscillator is developed by using this model [3], and a model of a harmonic oscillator
in an external gravitational field is considered and the developed formalism is applied to the
study of thermal properties of noninteracting Bose and Fermi gases in harmonic traps [4–6].
It is necessary to note the generalization of this problem to the two-dimensional case, where
an elastically bound particle in a space with a combined linear topological defect is studied in
detail [7, 8].
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However, the solution to the problem under consideration in the configuration space is not
enough and an important step here is to study the quantum problem with correspondence to
its classical analogue. The phase-space approach allows us to answer this question and opens
a lot of hidden features of the quantum system expressing it in the language of the classical
approach. In order to see them, we just need to compute the quasi-probability function of the
joint distribution of the momentum and position, where the Wigner distribution function (d.f.)
is most known. Analysing the Wigner distribution function for the non-relativistic harmonic
oscillator in an external field, we can observe that the applied linear field just shifts its stationary
states to the negative position direction and does not have any influence on the values of the
momentum. In this case, an important question about any role of the relativistic effect arises.
The purpose of this paper is the phase-space study of the one-dimensional relativistic oscillator
model in an external homogeneous field expressed through the finite-difference Schrödinger-
like equation [9–11].

Our paper has the following structure. In section 2, we give brief information about the
Wigner distribution function. Section 3 is devoted to the non-relativistic linear oscillator in an
external field, where we present its solutions in both configuration and phase spaces as well as
the expression of the Wigner function of the thermodynamic equilibrium. Section 4 is devoted
to the model of the finite-difference relativistic oscillator in an external field and in section 5,
we present the explicit expressions of the Wigner distribution function of the stationary and
thermodynamic equilibrium states for the relativistic linear oscillator in an external field.

2. The Wigner quasi-probability distribution function

The Wigner function W(p, x; t) [12], being as analogue of the classical distribution function in
the phase space ρ(p, x), has a wide range of applications in non-relativistic quantum mechanics
[13–15]. The limit relation limh̄→0 W(p, x; t) = ρ(p, x) between the Wigner function and
the classical distribution function exists and it allows us to calculate quantum corrections
to the known classical results employing an analytical form of the Wigner function. It is
necessary to note that the first application of this function was the calculation of the quantum
corrections to the classical distribution function of the equilibrium states of the particle system
in an arbitrary potential field. The Wigner d.f. is a function of momentum p and position x
as well as a function of time t in a general case. One can obtain it from the wavefunctions
of the quantum system under consideration in both the position representation ψ(x) and the
momentum representation φ(p) by using well-known transitions:

W(p, x; t) = 1

2πh̄

∫ ∞

−∞
ψ∗

(
x +

1

2
x ′, t

)
eipx ′h̄ψ

(
x − 1

2
x ′, t

)
dx ′, (2.1)

W(p, x; t) = 1

2πh̄

∫ ∞

−∞
φ∗

(
p +

1

2
p′, t

)
e−ixp′/h̄φ

(
p − 1

2
p′, t

)
dp′. (2.2)

The Wigner function (2.1)–(2.2) satisfies the following equations:∫
W(p, x; t) dp = |ψ(x, t)|2 = W(x, t), (2.3)∫
W(p, x; t) dx = |φ(p, t)|2 = W(p, t). (2.4)

Here, W(x, t) is the probability of the particle observation at point x at time t.
Correspondingly, W(p, t) is the probability of the particle observation in the momentum
space with the momentum value p at time t.
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Despite the fact that the Wigner function W(p, x; t) satisfies equations (2.3) and (2.4),
one cannot consider it as the probability of the observation of the particle with the momentum
value p at point x due to the fact that the function W(p, x; t) at some values of p and x can
become negative.

With the help of the Wigner function, one can find the average value of any physical
parameter f (p, x) through the following formula:

f̄ =
∫

f (p, x)W(p, x, t) dp dx. (2.5)

An explicit expression of the Wigner function has already been obtained for a number
of non-relativistic quantum mechanics problems [13–17], whereas the phase space of the
relativistic model of the linear oscillator described by the finite-difference equation [18] was
considered in [19].

The purpose of this paper is to obtain the explicit expression of the Wigner function for
the relativistic model of the linear oscillator in an external homogeneous field.

3. The non-relativistic linear oscillator in an external field

Let us first briefly consider the non-relativistic case. In non-relativistic quantum mechanics,
the Hamiltonian of the linear oscillator in a homogeneous external field

H
g

N = − h̄2

2m

d2

dx2
+

mω2x2

2
+ gx (3.1)

has the following eigenfunctions [2]:

ψ
g

Nn(x) = cNn · Hn

(
(x + x0)

√
mω

h̄

)
· e− mω

2h̄ (x+x0)
2
. (3.2)

These wavefunctions correspond to the energy spectrum

E
g

Nn = h̄ω

(
n +

1

2

)
− mω2

2
x2

0 (3.3)

with x0 = g/mω2. Function (3.2) satisfies the following orthonormalization relation:∫ ∞

−∞
ψ

g∗
Nn(x)ψ

g

Nm(x) dx = δnm. (3.4)

From (3.4), it follows that

cNn = cN0√
2nn!

, cN0 =
(mω

πh̄

)1/4
.

One can obtain the wavefunctions ψ
g

Nn(x) (3.2) by the simple transition from the
wavefunctions ψ0

Nn(x) of the non-relativistic oscillator at g = 0, i.e.

ψ
g

Nn(x) = e−ih̄x0
∂
∂x ψo

Nn(x) = ψ0
Nn(x + x0).

In the momentum representation, this transition is as follows:

φ
g

Nn(p) = e
ix0p

h̄ φ0
Nn(p).

After substitution of (3.2) into (2.1), one can perform the integration and we will find
the Wigner function of the non-relativistic linear oscillator stationary states in an external
field (3.1):

W
g

Nn(p, x) = (−1)n

πh̄
e−(η2+(ξ+ξ0)

2)Ln(2η2 + 2(ξ + ξ0)
2), (3.5)
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where η = p√
mωh̄

and ξ = x
√

mω
h̄

are the dimensionless variables, ξ0 = x0
√

mω
h̄

= g

ω

√
mω
h̄

is
the dimensionless parameter and Ln(x) is the Laguerre polynomial.

By using equation (2.2), one can obtain the following operator form of (3.5):

W
g

Nn(p, x) = 1

2nn!

1

πh̄
Hn

(
η +

i

2
∂ξ

)
· Hn

(
η − i

2
∂ξ

)
e−[η2+(ξ+ξ0)

2]. (3.6)

It is necessary to note that the Wigner function (3.5) is normalized by the condition∫ ∞

−∞
W

g

Nn(p, x) dp dx = 1,

from where we obtain that
n∑

k=0

�(k + 1/2)�(n − k + 1/2)

k!(n − k)!
= π. (3.7)

Another summation formula that we will obtain through the substitution of (3.2) into (2.3)
is

n∑
k=0

2kCk
n · (2k − 1)!! · H2n−2k(x

√
2) = 2nH 2

n (x), (3.8)

where by definition 0!! = (−1)!! = 1 [20]. If we take into account the equality
(2k − 1)!! = 2k√

π
�(k + 1/2), then this formula can be written in an equivalent form as

1√
π

n∑
k=0

22kCk
n�(k + 1/2)H2n−2k(x

√
2) = 2nH 2

n (x). (3.9)

The Wigner function of the quantum system in the state of thermodynamic equilibrium at
temperature T is determined by the formula

W
g

N(p, x) =
∞∑

n=0

w
g

NnW
g

Nn(p, x), (3.10)

where

w
g

Nn = e−βE
g

Nn

Z
g

N(β)
= 2 sinh(βh̄ω/2) e−βE0

Nn = w0
Nn, β = 1/kT . (3.11)

It is possible to perform the summation (3.10) for the case of a non-relativistic linear
oscillator in an external field, where we will obtain an explicit expression of the equilibrium
Wigner function as follows:

W
g

N(p, x) = tanh(βh̄ω/2)

πh̄
exp[−(η2 + (ξ + ξ0)

2) tanh(βh̄ω/2)]. (3.12)

The behaviour of the ground-state Wigner function W
g

N0(p, x) determined by
equation (3.5) is presented in figure 1. On can see that the applied external field in the
non-relativistic case does not influence the joint distribution form by just shifting it along the
negative values of the position.

4. The relativistic linear oscillator in an external field

The relativistic model of the linear oscillator in an external homogeneous field is described by
the finite-difference Hamiltonian [9–11]

Hg(x) = mc2 cosh i−λ∂x +
mω2

2
x(x + i−λ) ei−λ∂x + gx, (4.1)

4
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Figure 1. The behaviour of the ground-state Wigner function of the non-relativistic linear oscillator
in an external homogeneous field for values of the external field g = 0 and g = 3 (m = ω = h̄ = 1).

where −λ = h̄/mc is the Compton wavelength of the particle with mass m and parameter c is
the speed of light.

Here, one needs to mention that the dynamical symmetry group and Barut–Girardello
coherent states were constructed for model (4.1) and the bilinear generating function for the
Meixner–Pollaczek polynomials is obtained in [9] and the generalized coherent states for the
model of the relativistic linear oscillator were constructed in [11].

The eigenfunctions corresponding to the Hamiltonian Hg(x) (4.1) have the following
form:

ψg
n (x) = cg

n

(
h̄ω

mc2

)ix/−λ

�(ν + ix/−λ)P ν
n

(
x
−λ
;ϕ

)
e(ϕ−π/2)x/−λ, (4.2)

where the normalization constant c
g
n is

cg
n = ein(π/2−ϕ)(1 − e−2iϕ)ν

√
n!

2π−λ�(n + 2ν)
, ν = 1

2
+

√
1

4
+

(
mc2

h̄ω

)2

, (4.3)

and P ν
n (x;ϕ) is the Meixner–Pollaczek polynomial.

The wavefunctions (4.2) are orthonormalized by the following condition:∫ ∞

−∞
ψg∗

n (x)ψg
m(x) dx = δnm.

The energy spectrum of the relativistic oscillator in an external field corresponding to the
Hamiltonian Hg(x) (4.1) and the wavefunctions (4.2) has the following form:

Eg
n = h̄ωδ(n + ν), n = 0, 1, 2, 3, . . . , (4.4)

where the spectrum (4.4) becomes discrete under the condition |g| < mcω and the angle
0 < ϕ < π is determined through the relations cos ϕ = g/mcω and δ = sin ϕ.

One can obtain the wavefunctions φ
g
n(p) of the quantum system in the momentum

representation from the wavefunctions ψ
g
n (x) (4.2) through the relativistic Fourier transform:

φg
n(p) = 1√

2πh̄

∫ ∞

−∞
ξ ∗(p, x)ψg

n (x) dx, (4.5)

where the function

ξ(p, x) =
(p0 + p

mc

)ix/−λ
= eixχ/−λ (4.6)

5
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is the relativistic plane wave [18, 21] and χ = ln((p0 + p)/mc) is the rapidity. As a result,
we find that the wavefunctions of the momentum representation are expressed through the
generalized Laguerre polynomial:

φg
n(p) = c′

nζ
ν eγ ζ L2ν−1

n (2δζ ), c′
n = in(2δ)ν

√
n!

mc�(n + 2ν)
,

ζ = c(p0 + p)

h̄ω
= mc2

h̄ω
eχ , γ = i eiϕ.

(4.7)

5. Wigner representation of the relativistic oscillator in an external filed

Let us now construct the Wigner representation of the relativistic oscillator in an external
homogeneous field. First, we will consider the Wigner function of the oscillator stationary
states and we will use for our calculations the following definition of the Wigner function for
the relativistic case [19, 22]:

Wg
n (p, x) = 1

2π−λ

∫ ∞

−∞
φg∗

n

(
χ +

1

2
χ ′

)
φg

n

(
χ − 1

2
χ ′

)
e−ixχ ′/−λ dχ ′, (5.1)

where φ
g
n(p) ≡ φ

g
n(χ).

Substituting (4.7) into (5.1) and taking into account the relation

e± i−λ
2 ∂x e

− 2ixχ ′
−λ = e±χ ′

e
− 2ixχ ′

−λ ,

we will obtain the following finite-difference expression for the Wigner function of the
stationary oscillator states in an external field:

Wg
n (p, x) = n!

(2ν)n
L2ν−1

n (2δζ e
i−λ
2 ∂x )L2ν−1

n

(
2δζ e

−i−λ
2 ∂x

)
W

g

0 (p, x). (5.2)

Now, we can obtain the explicit expression of the Wigner function of the relativistic
oscillator ground state in an external field as follows:

W
g

0 (p, x) = (2δζ )2ν

πh̄�(2ν)

∫ ∞

−∞
eγ ζz+γ ∗ζ/zz

2ix
−λ −1 dz. (5.3)

With the help of the following integral relation [20]∫ ∞

0
xα−1 e−px−q/x dx = 2

(
q

p

)α/2

Kα(2
√

pq), Re p > 0, Re q > 0, (5.4)

one can express (5.3) through the Macdonald functions:

W
g

0 (p, x) = 2(2δζ )2ν

πh̄�(2ν)
e(2ϕ−π)x/−λK2ix/−λ(2ζ ). (5.5)

In a similar way, we obtain the following expression for the Wigner function of the excited
states:

Wg
n (p, x) = 2(2δζ )2νn!

πh̄�(n + 2ν)
e(2ϕ−π)x/−λ

n∑
k,j=0

(
n + 2ν − 1
n − k

)(
n + 2ν − 1
n − j

)

× (−2δζ )k+j

k!j !
ei(ϕ− π

2 )(k−j)K2ix/−λ+j−k(2ζ ), (5.6)
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where (a)n = a(a + 1) · · · (a + n − 1) = �(a + n)/�(a) is the Pochhammer symbol,(a

n

) = �(a+1)

n!�(a+1−n)
are the binomial coefficients and here we also used the explicit form of

the generalized Laguerre polynomials:

La
n(x) =

n∑
k=0

(−1)k

k!

(
n + a

n − k

)
xk.

The limit relation, reducing (5.6) to (3.5), is presented in detail in the appendix.
As in the case of the relativistic oscillator in the absence of the external field [19], we can

determine the equilibrium Wigner function for the relativistic oscillator in an external field by
formula (3.10) with the coefficients

wg
n = e−βE

g
n /Zg(β), (5.7)

where E
g
n is the energy spectrum of the relativistic oscillator (4.4) and the partition function

has the following form:

Zg(β) =
∞∑

n=0

e−βE
g
n = e−βh̄ωδν

1 − e−βh̄ωδν
. (5.8)

Let us express the equilibrium Wigner function by the following series of integrals:

Wg(p, x) = 1

Zg(β)

∞∑
n=0

e−βE
g
n Wg

n (p, x)

= 1 − e−βh̄ωδ

πh̄
(2δζ )2ν

∞∑
n=0

n! eβh̄ωδn

�(n + 2ν)

∫ ∞

−∞
eaζ ey+a∗ζ e−y

× L2ν−1
n (2δζ ey)L2ν−1

n (2δζ e−y) e2ixy/−λ dy. (5.9)

One can now use the following bilinear generating function for the generalized Laguerre
polynomials [23]:

∞∑
n=0

n!zn

�(n + α + 1)
Lα

n(x)Lα
n(y)

= (xyz)−α/2

1 − z
Iα

(
2
√

xyz

1 − z

)
exp

(
−z(x + y)

1 − z

)
, |z| < 1, (5.10)

and changing the integration and summation for the function Wg(p, x) (5.9) we obtain the
following expression for the equilibrium Wigner function:

Wg(p, x) = 4δζ

πh̄
e−2φx/−λ eβh̄ωδ(ν−1/2)I2ν−1

(
2δζ

sinh βh̄ωδ

2

)
K2ix/−λ

(
2ζ

√
ρ2 + δ2 coth2 βh̄ωδ

2

)
,

(5.11)

where φ = arg
(
iρ + δ coth βh̄ωδ

2

)
, ρ = cos ϕ and Iα(x) is the modified Bessel function of the

first kind. To derive (5.11), we have also used formula (3.6).
It is obvious that the obtained expressions of the Wigner function for the relativistic

oscillator in an external field in the case of g = 0 (i.e. δ = 1 and ρ = 0) go to the
corresponding expressions of the relativistic oscillator without an external field [19].

The behaviour of the ground-state Wigner function of the relativistic linear oscillator in
an external homogeneous field W

g

0 (p, x) expressed through equation (5.5) is presented in
figure 2. One can mention here that the limit c → ∞ recovers the non-relativistic case and
the behaviour of (5.5) will be identical to the non-relativistic ground-state Wigner function

7
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Figure 2. The behaviour of the ground-state Wigner function of the relativistic linear oscillator in
an external homogeneous field for speed of light c = 4 and values of the external field g = 0, 1, 2
and 3 (m = ω = h̄ = 1).

W
g

N0(p, x) determined by equation (3.5), which is presented in figure 1. Then, any finite value
of the speed of light c should show for us the contribution of the relativistic effects. Therefore,
we depicted the joint distribution for the value of speed of light c = 4 (m = ω = h̄ = 1)

and see that unlike the non-relativistic case, a stronger field to be compared with the speed
of light cardinally changes its Gaussian-like form as well as shifts this distribution along the
negative values of the position. One can see that the distribution in the absence of the field is
determined for both positive and negative values of the momentum whereas a stronger field
shifts it to the positive momentum values.

We do not present here a graphical distribution of the Wigner function for the
thermodynamic equilibrium state and the excited states of the relativistic oscillator under the
influence of the external field. But we need to note here that the behaviour of the relativistic
oscillator excited states in the phase space is similar to the ground-state Wigner function
behaviour. The same picture can be observed for the Wigner function for the thermodynamic
equilibrium states, where it is a good approximation of the ground state joint distribution at
room temperature.

Appendix

In this appendix, we compute the non-relativistic limit of the Wigner functions of the relativistic
linear oscillator in an external field. First, we have to take into account that

ρ = cos ϕ = ξ0√
μ

, δ = sin ϕ =
√

1 − ξ 2
0

μ
,

8
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x/−λ = √
μξ, ζ = √

μ(η +
√

μ2 + η2),

ν = 1

2
+

√
1

4
+ μ2, μ = mc2

h̄ω
.

Then, at μ → ∞ we will have the following limit relations for the elementary functions:

lim
μ→∞ 2φx/−λ = 2ξξ0

b
, lim

μ→∞(2ϕ − π)x/−λ = −2ξξ0, (2δζ )2ν ∼= e2μ ln 2μ+2
√

μη−ξ 2
0 ,

(A.1)

as well as for the special functions:

lim
μ→∞ ν− n

2 L2ν−1
n

(
2δζe

i−λ
2 ∂x

) = (−1)n

n!
Hn

(
η +

i

2
∂ξ

)
,

I2ν−1(2δaζ ) ∼= 1√
4πμb

e2μ(b−f )+2
√

μbη+(b′− 1
b
)η2−bξ 2

0 , (A.2)

K2ix/−λ(2b̃ζ ) ∼=
√

π

4μb̃
e−2μb̃−2

√
μb̃η−b̃η2− ξ2

b̃ ,

where

a = 1

sinh f
, b = coth f, f = βh̄ωδ

2
,

b̃ =
√

ρ2 + δ2b2, b̃ ∼= b +
ξ 2

0

2μ

(
1

b
− b

)
.

To obtain formulae (A.2), we used the following representations for the modified Bessel,
Macdonald and gamma functions [24]:

√
2πIp (x) ∼= e

√
p2+x2−p sinh−1 p

x

4
√

p2 + x2
, x ≈ p → ∞,

Kip(x) ∼=
√

π

2
· 1

4
√

x2 − p2
· e−

√
x2−p2−p·sin−1 p

x , x > p > 0, p → ∞,

�(z) ∼=
√

2π

z
· ez ln z−z, |z| → ∞,

and we needed to take into account the following limit relation between the Laguerre and the
Hermite polynomials [25]:

lim
ν→∞ ν− n

2 L2ν−1
n (2ν + 2

√
νx) = (−1)n

n!
Hn(x).

By using equations (A.1) and (A.2), one can show that at c → ∞, expressions (5.2) and
(5.11) coincide with expressions (3.6) and (3.12), respectively.
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[25] Szegö G 1975 Orthogonal Polynomials ed R I Fourth (Providence, RI: American Mathematical Society)

10

http://dx.doi.org/10.1016/j.physrep.2005.07.002
http://dx.doi.org/10.1016/S0375-9601(01)00539-4
http://dx.doi.org/10.1002/qua.20263
http://dx.doi.org/10.1016/0034-4877(89)90014-1
http://dx.doi.org/10.1103/PhysRev.40.749
http://dx.doi.org/10.1016/0370-1573(95)00007-4
http://dx.doi.org/10.1016/0370-1573(84)90160-1
http://dx.doi.org/10.1070/PU1983v026n04ABEH004345
http://dx.doi.org/10.1016/0003-4916(75)90182-7
http://dx.doi.org/10.1016/0378-4371(82)90137-6
http://dx.doi.org/10.1007/BF02575445
http://dx.doi.org/10.1063/1.1518139

	1. Introduction
	2. The Wigner quasi-probability distribution function
	3. The non-relativistic linear oscillator in an external field
	4. The relativistic linear oscillator in an external field
	5. Wigner representation of the relativistic oscillator in an external filed
	Appendix
	References

